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The real problem is not information overload, it s filter failure.

— Clay Shirky
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Comprehensive review of academic search systems: evolution, analysis, and future research directions, 2025
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Can you suggest 3 papers that study LLMs' abilities of generating new research ideas in NLP?

Certainly! Here are three papers that study LLMs' abilities of generating new research ideas in NLP:
1. "ldeaBench: Benchmarking Large Language Models for Research Idea Generation” (Guo et al. 2024") (Guo et al. 20242) (Guo et al. 20243)

This paper presents a benchmark for evaluating LLMs' ability to generate research ideas. The authors create a dataset of recent papers from five
domains (Computer Science, Economics, Chemistry, Physics, and Medicine) and annotate them with future research ideas. They then evaluate
four LLMs (Gemini, Claude-2, GPT-3.5, and GPT-4) on their ability to generate ideas that align with the target papers' ideas. The results show that
LLMs can generate research ideas that are novel, relevant, and feasible to a significant extent.

2. "Can Large Language Models Unlock Novel Scientific Research Ideas?" (Kumar et al. 2024") (Kumar et al. 20242) (Kumar et al. 20243)

This paper investigates the potential of LLMs in generating future research ideas across five domains. The authors create a dataset of recent
papers from the same five domains as in the previous paper and annotate them with future research ideas. They then evaluate four LLMs (Gemini,
Claude-2, GPT-3.5, and GPT-4) on their ability to generate ideas that align with the target papers' ideas. The results show that LLMs can generate
research ideas that are novel, relevant, and feasible to a significant extent.

This paper proposes a scientific paper idea proposer (SciPIP) that leverages LLMs to assist researchers in generating new ideas. SciPIP constructs
aliterature retrieval database and uses LLMs to generate novel and feasible ideas aimed at addressing problems within the given background. The
authors demonstrate the effectiveness of SciPIP in generating new research ideas in NLP.

These papers provide insights into the ability of LLMs to generate new research ideas in NLP and highlight the potential of LLMs in accelerating
scientific research (Kumar et al. 20242).
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How Al enhance literature search platforms?
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Pa Seca
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* Mimic human researchers workflows and expand
search function.

 Two LLM agents: crawler and selector.

PaSa: An LLM Agent for Comprehensive Academic Paper Search, 2025
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Method Crawler Recall Precision Recall Recall@100 Recall@50 Recall@20
Google - - - 0.2015 0.1891 0.1568
Google Scholar - - - 0.1130 0.0970 0.0609
Google with GPT-40 - - - 0.2683 0.2450 0.1921
ChatGPT* - 0.0507  0.3046 - - -
GPT-0l - 0.0413  0.1925 - - -
PaSa-GPT-40 0.7565 0.1457 0.3873 - - -

PaSa-7b 0.7931 0.1448  0.4834 0.6947 0.6334 0.5301
PaSa-7b-ensemble 0.8265 0.1410  0.4985 0.7099 0.6386 0.5326




UNIVERSITAT
TUBINGEN

17

Taxonomy-guided Index Construction

* The Problem: Beyond Surface-Level
Text Matching

* Taxolndex Framework

e Step 1: Constructing the Semantic
Index

e Step 2: Index-grounded Al Training
(Fine-tuning)

* Step 3: Enhanced Retrieval Process

I Topic-level Phrase-level Indexed information
CL h’q X th35€1 Core topics Y*
- D%ééﬂg% phrase K . reinforcement learning,
ht hp ht hpl& — netWOl‘kl B [ Topic encoder |[ Phrase encoder \ * domain knowledge,
cll' d qQ |q o q| ot ; : : ; P « reward technique, ...
: »O O« T _ é é Indicative phrases Y7
Py Indexing L, y Indexing htr ] ' 1hP  « text-based games,
network network m m « game playing, ...
‘ % Retriever | | 3&% Retriever | “ f1 ] f24| |f_ﬂ - - 4} -
: Using reinforcement learning
d td training auer ‘* Retr!ever | to learn how to play text-
ocumen gquery q an input text based games. The ability ...
(a) Index-grounded fine-tuning (b) Index learning with the indexing network
CSFCube DORIS-MAE
N@5 N@10 M@5 M@10 R@50 R@100 N@5 N@10 M@5 M@10 R@50 R@100
BM25 0.307 0.310 0.088 0.134 0.504 0.635 0.354 0.330 0.079 0.107 0.490 0.669
no Fine-Tuning 0.352 0.337 0.108 0.151 0.524 0.680 0.385 0.360 0.079 0.113 0.551 0.709
- FFT 0.372 0.368 0.123 0.169 0.576 0.692 0.408 0.387 0.084 0.122 0.562 0.736
; aFT 0.378 0.344 0.119 0.160 0.578 0.696 0.400 0.372 0.080 0.115 0.558 0.714
E FFT w/ GRF 0.331 0.317 0.112 0.152 0.561 0.705 0.400 0.379 0.087 0.123 0.586 0.756
8 FFT w/ ToTER  0.406 0.375 0.135 0.179 0.591 0.710 0.423 0.394 0.091 0.128 0.563 0.736
Ay
“ JTR 0.379 0.352 0.118 0.157 0.598 0.699 0.395 0.380 0.080 0.118 0.548 0.713
TaxoIndex 0.458™ 04177 0.144™ 0.198™ 0.633™* 07417 0447 04217 0.104™ 0.144™ 05787  0.756'
Taxolndex ++  0.469' 0.426/ 0.158™ 0.209" 0.621"* 0.746™ 0.4497 0.424™ 0105 01457 05817 0.7517

Taxonomy-guided Semantic Indexing for Academic Paper Search, 2024
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Planning

Deep Research transforms your
prompt into a personalized multi-point
research plan

4 Gemini

Searching

Deep Research autonomously
searches and deeply browses the web
to find relevant, up-to-date
information

Deep Research System Card, 2025

Gemini Deep Research

High School Collegiate

Reasoning

Deep Research shows its thoughts as it
reasons over information gathered
iteratively and thinks before making its
next move

Overall
Evaluation:

Medium
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. 200
- I

Professional

Reporting

Deep Research provides
comprehensive custom research
reports with more detail and insights,
generated in minutes and available as
an Audio Overview, saving you hours
of time


https://cdn.openai.com/deep-research-system-card.pdf
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1 (Summary) - Al Enhanced Search System

* Main Function
* Optimize scholarly information retrieval
* Context-aware, semantically rich, and personalized search results

* Key Techniques
* LLM-based agents
* Embedding-based Retrieval
* Personalization

* Challenges

* Data heterogeneity
* Limited handling of complex scientific content
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Resonance Due to Nonlinear Optical Propagation in Heliconical
Cholesteric Liquid Crystals

Ashot H. Gevorgyan ' and Francesco Simoni 2%
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updates

Citation: Gevorgyan, A.H.; Simoni, F
Light-Induced Self-Oscillations and
Spoiling of the Bragg Resonance Due
to Nonlinear Optical Propagation in
Heliconical Cholesteric Liquid
Crystals. Pholonics 2022, 9, 881

https:/ /doi.org /10.3390/

School of Natural Sciences, Far Eastern Federal University, 10 Ajax Bay, Russky Island,
690922 Vladivostok, Russia

= Universita Politecnica delle Marche, 60100 Ancona, Italy

Institute of Applied Sciences and Intelligent Systems CNR, 80072 Pozzuoli, Italy
Correspondence: f.simoni@photomat.it

Abstract: In a recent paper, we have reported the results of a study of the nonlinear light propagation
of a beam traveling along the helix direction of a heliconical cholesteric liquid crystal, showing that
optical reorientation leads to instabilities in the optical transmission when the light wavelength is close
to the Bragg resonance. Here we report a detailed study of this phenomenon, using Ambartsumian’s
layer addition modified method to take into account the continuous modification of the wave field
during propagation. We show that the whole transmission spectrum is modified by increasing the
light intensity and point out that self-induced oscillations take place at lower intensities on the red
side edge of the Bragg resonance while stable values of transmittivity are still observed on the blue
side edge. A further increase in the intensity leads to oscillations of lower amplitude on the blue
side while an irregular behavior of the transmission is achieved on the red side. At higher intensities,
the Bragg resonance disappears and transmission becomes unstable for any light wavelength. A
simple phenomenological model is proposed to account for the onset of the oscillations and the
asymmetry of the behavior at the opposite side of the Bragg resonance. We also point out that the
static electric field is a driving parameter to switch from stable to oscillatory to irregular behavior in
the transmittivity at a given light wavelength.

Keywords: he gs; pitch tuning; optical instabilities
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the light wavelength is close to the Bragg
resonance. The study demonstrates that self-
induced oscillations take place at lower
intensities on the red side edge of the Bragg
resonance while stable values of transmittivity
are still observed on the blue side edge. A further
increase in intensity leads to oscillations of lower
amplitude on the blue side and an irregular

bet
higher intensities, the Bragg resonance

avior of the transmission on the red side. At

disappears and transmission becomes unstable
for any light wavelength. A simple
phenomenological model is proposed to account
for the onset of the oscillations and the
asymmetry of the behavior at the opposite side
of the Bragg resonance. The study also points
out that the static electric field is a driving
parameter to switch from stable to oscillatory to

irregular behavior in the transmittivity at a given
light wavelength. The research received no
external funding and the authors declare no
conflict of interest. Data are available from the

authors.
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@ Cyber security To address the challenges in evaluating large language

Slotech model (LLM) compression methods, the authors
Statistics " i
T Ge Yang!, Changyi He', Jinyang Guo'; Jianyu Wu', Yifu Ding', introduce the Large Language Model Compression
iloso ;
A ] : ' . Aishan Liu', Haotong Qin?, Pengliang Ji*, Xianglong Liu' Benchmark (LLMCBench). This benchmark is carefully
nowledge graphs 1 Beihane University 2 ETH Zuricl 3 v P X X X i
P - Beihang University ETH Zurich Carnegie Mellon University designed to provide a thorough analysis of different
istory S
Probability ™ LLM compression algorithms, allowing for better
—
® Physics F’l Abstract comparisons and insights into their effectiveness. By
@ Creativity — establishing this benchmark, the authors aim to
Astronormy 2 Although large language models (LLMs) have demonstrated their strong intelli- improve the understanding and development of
O gence ability, the high demand for computation and storage hinders their practical fficient LLM ion techni
@ Classics — application. To this end, many model compression techniques are proposed to SLiCion COIMBIOSS OIS CHTICNCS
Hardware o increase the efficiency of LLMs. However, current researches only validate their

melhud's on limited models, datasets, Fnelrics" ete, n_nd still lEle ;1c.omp_rehensive Ask a follow-up [‘a @
evaluation under more general scenarios. So it is still a question of which model

compression approach we should use under a specific case. To mi
we present the Large Lang ¢ Model Compression Benchmark (L.
y with an in-depth analysis for LLM compression al-
gorithms, We first analyze the actual model production requirements and carefully
design evaluation tracks and metrics. Then, we conduct extensive experiments and
comparison using multiple mainstream LLM compression approaches. Finally, we
perform an in-depth analysis based on the evaluation and provide useful insight for
LLM compression design. We hope our LLMCBench can contribute insightful sug-
gestions for LLM compression algorithm design and serve as a foundation for future
research. Our code is available at https://github.com/AboveParadise/LLMCBench.
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1 Introduction

Recently, large language models (LLMs) have attracted increasing attention because of their strong
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intelligence ability. While it achieves excellent performance, the huge computation and storage =
burden hinders the practical usage of t LLMs. To solve this problem, many model compression
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PaperQA — An Agent-Based RAG System

* Aims to address the hallucinations and knowledge update.

* Key Components:

e Search, Gather Evidence, Answer Question

Query
Answer

I Search Gather Evidence
' ——— embedded
I keywords query zape;s chunks MMR =L
O R oun vector —» LM - ToP M
! avaltable™ sosults & Chunks
years APIs embedded yetrjeval relevance
I status question score
1 [ J
Input 1
put-_5 Agent LLM
Query |
I Answer Question
question
1 ~L :
1 continue
Do you know  context answer answering
- . = show . N
anything library to if sufficient,
' about this propose — —i e ——
I question? answer agent

PaperQA: Retrieval-Augmented Generative Agent for Scientific Research, 2023
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Paper Preparation (§2.1)

Initial Generation (§2.2)
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Benchmarking
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Multi-domal QA

Human Refinement (§2.3, §2.4)

Based on the retrieved knowledge, aortic arch is part of anatomical
structure, which is the location of injury or poisoning. Anatomical structure
also affects cell function, which further affects injury or positioning,

(o J———————

@ All KG cepls suggesting the anatomy of the aortic arch could influence the severity of
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The SciQA Scientific Question Answering Benchmark for
Scholarly Knowledge, 2023
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ChemVLM: Exploring the Power of Multimodal Large
Language Models in Chemistry Area, 2025

BLADE: Enhancing Black-box Large Language Models
with Small Domain-Specific Models, 2024

SCITAT: A Question Answering Benchmark for Scientific
Tables and Text Covering Diverse Reasoning Types,
2024

GIVE: Structured Reasoning of Large Language Models
with Knowledge-Graph-Inspired Veracity Extrapolation,
2025
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2 (Summary) - Paper Chat and Scientific QA

* Main Function
* Interactive Q&A with research papers

* Key techniques
e LLM-based agents
* PDF Parsing & Contextual Chunking
* Summarization & Key Point Extraction
e Multi-turn Dialogue Tracking

* Challenges
* PDF Quantity & Size Limits
 Domain Knowledge
* Reliability & Explainability
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Outline

\ [ Future Direction and Conclusion
Oj Upen Discussion

Embedding, Content-Based Filtering,
Collaborative Filtering
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Graph-based QA, SQL Search, Graph

Learning, Visualization

Graph Based System sessee

RAG, Chunking, Multi-A gent
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3 - Graph Based System

¢° CONNECTED PAPERS
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Explore connected papers in a visual graph

ISearch by keywords, paper title, DOI or another identifier

d

Paper DOI

To start, enter a paper identifier

You can try:
X B T
arXiv Paper Title Semantic Scholar
Paper URL Paper URL

Or start with one of our example graphs

Build a graph

Iy

PubMed
Paper URL



UNIVERSITAT
TUBINGEN

31

3 - Graph Based System

¢° CONNECTED PAPERS
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3 - Graph Based System
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LLMs4Synthesis: Leveraging Large Language Models for Scientific Synthesis, 2024
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Performance and Conclusion

* SFT+RLAIF performs the best.

B GPT-4 Evaluator on GPT-4 Synthesis B GPT-4 Evaluator on Mistral Synthesis @® Vanila @® Vanilla Avg. Scores
M Human Prolific Survey on GPT-4 Synthesis [l Human Prolific Survey on Mistral Synthesis @ SFT+RLAIF @ SFT+RLAIF Avg. Scores
o ; e® e
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Figure 3: Consistency comparison of the GPT-4 evaluator be-
tween the Vanilla and SFT+RLAIF (w/ GPT-4 Features) models,
assessed through three evaluations on the test set.
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* Graph Learning?

2016

train dataset: 2016 -- 2019; test dataset: holdout data 2016 -- 2019; eval dataset 2019 --2022

Forecasting high-impact research topics via machine learning on evolving knowledge graphs, 2025
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LLMs + Graph?

K — GprahGPT [63], HiGPT [64], GraphTranslator [88], UniGraph [25],
Node-level Tokenization )_[GIMLET [92], XRec [51]

—(GNNS as Prefix

— GraphLLM [5], GIT-Mol [45], MolCA [48], InstructMol [4],
Graph-level Tokenization )_(G-Retriever [24], GNP [65]

—/ N

Embs. from LLMs for GNNs ) G-Prompt [30], SimTeG [14], GALM [81], OFA [42], TAPE [22], LLMRec [73]

—(LLMS as Prefix

Labels from LLMs for GNNs )—(OpenGraph [80], LLM-GNN [9], GraphEdit [21], RLMRec [58]

MoMu [60], ConGraT [3], G2P2 [74], GRENADE [36], MoleculeSTM [46],

Alignment between GNNs and LLMs THLM [100], GLEM [94]

(LLMS-Graphs Integration

Fusion Training of GNNs and LLMs }—( GreaseLM [90], DGTL [54], ENGINE [98], GraphAdapter [31]

LLMs Agent for Graphs )—(Pangu [19], Graph Agent [71], FUXI [18], Readi [10], RoG [49]

(Large Language Models for Graphs)
|

NLGraph [68], GPT4Graph [20], Beyond Text [28], Graph-LLM [8], GraphText [95],

Tuning-free Talk like a Graph [15], LLM4DyG [91], GraphTMI [11], Ai et al. [2]

- LLMs-Only

Tunine- ired InstructGLM [84], WalkLM [62], LLaGA [7], InstructGraph [69], ZeroG [38],
uning-require GraphWiz [6], GraphInstruct [50], MuseGraph [61]
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A Survey of Large Language Models for Graphs, 2025
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3 (Summary) - Graph Based System

* Main Function

e Relationships between research papers
* Explore knowledge structures

* Key techniques
* Citation & Co-Authorship Networks
* Graph Visualization & Navigation
* Trending & Citation Analysis

* Challenges

 Effective Graph Representation
e Graph Update
* Integration with LLMs
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New conference proceedings
This digest contains papers from the new proceedings of Annual Meeting of the Association for Computational Linguistics (ACL), Findings of the Association for Computational Linguistics (Findings of ACL).
CiteLab: Developing and Diagnosing LLM Citation Generation Workflows via the Human-LLM Interaction oG e
Jiajun Shen, Tong Zhou, Yubo Chen, Kang Liu, Jun Zhao
Proceedings of the 63rd Annual Meeting of the A: iation for Comp ional Linguistics (Volume 3: System Demonstrations) il 89 ife 0 R 0 &f Language N

The emerging paradigm of enabling Large Language Models (LLMs) to generate citations in Question-Answering (QA) tasks is lacking in a unified framework to standardize and fairly compare different citation generation
methods, leading to difficulties in reproduction and innovation. Therefore, we introduce Citeflow, an open-source and modular framework fostering reproduction and the implementation of new designs. Citeflow is highly
extensible, allowing users to utilize four main modules and 14 components to construct a pipeline, evaluate an existing method, and understand the attributing LLM-generated contents. The framework is also paired with a
visual interface, Citefix, facilitating case study and modification of existing citation generation methods. Users can use this interface to conduct LLM-powered case studies according to different scenarios. Citeflow and
Citefix are highly integrated into the toolkit CiteLab, and we use an authentic process of multiple rounds of improvement through the Human-LLM interaction interface to demonstrate the efficiency of our toolkit on

implementing and modifying citation generation pipelines. Citelab is released at https://github.com/SjJ1017/Citelab @ @J
FineCite: A Novel Approach For Fine-Grained Citation Context Analysis T E B e
Lasse M. Jantsch, Dong-Jae Koh, Seonghwan Yoon, Jisu Lee, Anne Lauscher, Young-Kyoon Suh

Findings of the iation for Computational Linguistics: ACL 2025 il 83 ife O R 0 -

Citation context analysis (CCA) is a field of research studying the role and purpose of citation in scientific discourse. While most of the efforts in CCA have been focused on elaborate characterization schemata to assign
function or intent labels to individual citations, the citation context as the basis for such a classification has received rather limited attention. This relative neglect, however, has led to the prevalence of vague definitions
and restrictive assumptions, limiting the citation context in its expressiveness. It is a common practice, for example, to restrict the context to the citing sentence. While this simple context conceptualization might be
sufficient to assign intent or function classes, it fails to cover the rich information of scientific discourse. To address this concern, we analyze the context conceptualizations of previous works and, to our knowledge,
construct the first comprehensive context definition based on the semantic properties of the citing text. To evaluate this definition, we construct and publish the FineCite corpus containing 1,056 manually annotated
citation contexts. Our experiments on established CCA benchmarks demonstrate the effectiveness of our fine-grained context definition, showing improvements of up to 25% compared to state-of-the-art approaches. We

make our code and data publicly available at https://github.com/lab-paper-code/FineCite. @ @
A*3: Automatic Alignment Framework for Attributed Text Generation G O+ o

Yue Wang, Haoke Zhang, Juntao Li, Jinxiong Chang, Min Zhang
Proceedinas of the 63rd Annual Meetina of the A. iation for Ci ional Linauistics (Volume 1: 1 ona Paners) il. 72 & 0 8/l 0 B L anquaae -
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Recommendation System

Recommendation System Model

[ Content-Based Filtering ] [ Collaborative Filtering ] [ Hybrid System
l |
I | .
Model-Based Memory-Based —[ Weighted
Collaborative Filtering Collaborative Filtering |
[ —[ Switching
ltem-Based )
| Collaborative Filtering | _[ Cascased
User-Based ) L Mixed
| Collaborative Filtering |

-{ Feature Combination

=

— Feature Augmentation

—[ Meta-Level

A Survey of Recommendation Systems: Recommendation Models, Technigues, and Application Fields, 2022
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Pipeline of recommendation systems
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Content-Based Filtering

Representation

[ Description of items ]

[

User Modeling

F{epmsfntaﬁon

Hybrid System
-——a Collaborative Filtering .~

Top-N predicted Neighbours
Profile Pul‘latching

[ Users’ Profiles ]

Profile-ltem m

hing

(comparison or filtering)

|
Top-N Precliicted ltems

Information Rating Data

v
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Recommendation Items

~

/

A Survey of Recommendation Systems: Recommendation Models, Technigues, and Application Fields, 2022
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Content-based Methods

 Compares topics from the researcher's profile with
[ Researcher’s corpus ]—)

the language models of unseen papers.

e Uses the symmetrized Kullback-Leibler divergence to
measure similarity between probability distributions
(topics and language models). '

[ Recommendation corpus ]

Language
modeling

* Limitations
* Shifted Cold-Start Problem
* Potential for Limited/General Concepts Language models
* Lack of Contextual Citation Information of the recommendation

corpus

An LDA-Based Approach to Scientific Paper Recommendation, 2016

How many topics?

LDA algorithm

Y

LDA-based researcher profile

Recommendation
algorithm

Validation

(Perplexity)

Extracted topics

|

Ranked papers ]
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Collaborative Filtering

* By training a text encoder network as a combination of content recommendation
and item metadata prediction (e.g., tag prediction)

C Pooling Layer 9(Xa2) mEE—— r=0.97
user: Yoshua

(ny) @‘@’@ (W (R )->(1%) : @’@ — r = 0.02

@@@@@@ @@ \@ p =082

[ @—>p =011
tag: LDA
This paper is about deep learning not LDA - Paper 42

Ask the GRU: Multi-Task Learning for Deep Text Recommendations, 2016
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Hybrid Systems

Online serving

| Top N recall |

‘ Item gmbedding \ <
index

7

L2 normalization

[ Cross-entropy Loss ]

Linear + ReLU i
I
1
]
]
Linear + ReLU :
1 Fitting
i
]
. ay
Embedding
User features Context features | -«
query : u

[ [ ——

?

dot product

(

Category
Alignment Loss

J

A

L2 normalization

Linear + ReLU

Linear + ReLU

T Embedding

Item features

Content features

A Dual Augmented Two-tower Model for Online Large-scale Recommendation, 2021

item:v
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Comparsion of Recommendation Systems

Model Type

Content-Based Filtering

Collaborative Filtering

Hybrid Systems

Pros

Works well for new users
Personalized to individual
preferences .
Doesn’t require large user base °
Easy to interpret
recommendations

Doesn’t need item metadata
Leverages collective user
behavior

Combines best of all models .
Mitigates individual weaknesses
Often improves accuracy

Cons

Needs detailed item features
Limited discovery of new interests

Struggles with sparse data
Scalability issues in memory-based

Increased complexity
Requires more computation
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Document Embeddings
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Scholar Inbox — 2025 Demo

PERSONALIZED RECOMMENDATION SCHOLAR MAPS
. . Publishers ;
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E e S
o @ 2
* Scholar Maps - 3
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* Conference Planner -
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Scholar Inbox: Personalized Paper Recommendations for Scientists, 2025
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Software Flow
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i Maltjnal Deepscatter
PostgreSQL —> —>
N J
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NGT Index GTE Embeddings Figure Extraction
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Scholar Inbox: Personalized Paper Recommendations for Scientists, 2025
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Recommender system

) l Scholar Inbox Q search

#5562 prpec
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Like / Dislike
2. Conferences !

Labels

© Bookmarks
Deep Learning
Neural Radiance F...
B Generative Models
» Large Language...
B Optimization
» Self-Driving Cars
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GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields
Michael Niemeyer, Andreas Geiger
Computer Vision and Pattern Recognition (CVPR), 2021

w19 W23 991013 [ Computer Vision and Graphics | Generative Models o

Deep generative models allow for photorealistic image synthesis at high resolutions.
But for many applications, this is not enough: content creation also needs to be
controllable. While several recent works investigate how to disentangle underlying
factors of variation in the data, most of them operate in 2D and hence ignore that our
world is three-dimensional. Further, only few works consider the compositional nature
of scenes. Our key hypothesis is that incorporating a compositional 3D scene
representation into the generative model leads to more controllable image synthesis.
Representing scenes as compositional generative neural feature fields allows us to
disentangle one or multiple objects from the background as well as individual objects'
shapes and appearances while learning from unstructured and unposed image
collections without any additional supervision. Combining this scene representation
with a neural rendering pipeline yields a fast and realistic image synthesis model. As
evidenced by our experiments, our model is able to disentangle individual objects and
allows for translating and rotating them in the scene as well as changing the camera
pose.

B Figures & Tables Q- Al Summary @ Similar Papers

GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields
Michael Niemeyer, Andreas Geiger

© Bookmark
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X ArXiv

99 Citation

) Project page
< Share
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9.000 users come back again and again

User Retention Over the Last 30 Days

8460 _
(40.3%)

6345 _
(30.2%)

4230 |
(20.1%)

2115
(10.1%)

Active Users(% of Total Users)

Total: 28k Users (so far)

—eo— User Number

5 10 15 20 25 30
Days Ago

(a) User Retention

Users by Field of Interest

Other
Mathematics

Computer
Vision
and Graphics

5%

Biclogy 39

Physics
Statistics 594
10%
Language
29%
Robotics )
and Control MEEhIIﬁE
Learning

(b) User Domain Distribution
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Welcome to check our paper

* First time serving NLP conference.

 Hall 5X, 28 July, 11:00-12:30, ACL 2025.
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4 (Summary) - Recommendation System

* Main Function
* Keep updated literatures
* Personlized Recommendation
e Collections

» Key techniques
* Content-Based Filtering
* Collaborative Filtering
* Semantic Search & Embeddings

* Challenges
* Cold Start Problem
* Overpersonalization vs Matthrew Effect
* Dynamic Interests of Researchers
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Overview of popular literature search

& o 6\% &
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F o T 0 & Qp & Q_eﬂ & YS\ &
@*y 05& \\eo-\‘ioo e‘?& ¥ o-s&} Qé il é (55‘\ & o \“\ » &
Platform T g ‘f' Q" 9‘1’ Qo W Q¥ Re Cost Data Source
Elicit v v v v Freemium 125 million
OpenScholar v v v v v Free 45 million
'?j Undermind v v v v v v | Premium  over 200 million
§ Perplexity v v v v v Freemium
= Consensus v v Vv Vv v Freemium over 200 million
§ SciSpace v v v v v Freemium
_g scienceQA v v | v v v Freemium 220 million
5 PaperQAz v v Free
~  Paperguide v v v v v Freemium
< HyperWrite v v v v Premium
ResearchKick v v v v v | Premium
- Connected Papers v v Freemium 214 million
§ ScholarGPS v v Free over 200 million
g CiteSpace v v Freemium
<, Sci2 v Free
£ NLPKG v v | v Free
©  ORKG ASK v v v v Free 76 million
ChatGPT v v v v Freemium 10 pdf files
Claude N v v v Freemium 5 pdffiles
Deepseek v v v v Free
::a Research v v v v Freemium 1 pdffile
©  NotebookLM v v v v | Freemium 50 pdf files
i Enago Read v v v v v v | Freemium 1 pdf file
£ DocAnalyzerAl v v v v v | Premium few pdffiles
CoralAl v v v v Freemium 1 pdffile
ExplainPaper v v v Freemium 1 pdffile
ChatPDF v v v v v Premium 1 pdffile
. Arxiv Sanity v Y v | Free
2 Scholar Inbox v N v v v | Free
£  ResearchTrendai N Freemium
£  TrendingPapers v v v v v | Free
g Bytez v v v v v Freemium
& Notesum.ai v v v v | Freemium
Research Rabbit v v v Free
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Other Al-enhanced Literature Search

. 'Q% & g_.,N% 0\‘-3 o
W, FIPS T e £
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i -Oé" AP S F QX QS TR @
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Platform "'-’éb Q“e ® Ob && Y’o & ] \be Q‘bg <® Q‘}Q DGR <« S Cost Data Source

Google Scholar v Y v v’ | Free

Semantic Scholar v v VY v v e v' v | Free 214 million

Baidu Scholar v v v Y v v | Freemium 680 million
© BASE v v v Free 415 million
bED Internet Archive Scholar v v Free 35 million
:El Scilit v v |V v Free 172 million
< The Lens v v v Ve Freemium 284 million
= Science.gov v v Free several million
@ Academia.eu v v v Freemium 55 million

OpenAlex v v Ve Freemium

AceMap v v o vV v Free 260 million

PubTator3 v v | v v Free 6 million
z Papers with Code v v v Free 154 thousand
= ScienceAgentBench v v v Free
5 ORKG Benchmarks v v v Free
M Huggingface v v v v v Freemium
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Conclusion

 Alistransforming literature search.

Al tools boost discovery but still require oversight.

 Four Al paradigms jointly redefine research workflows.

* Future directions point to smarter, multimodal systems.
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Future Direction

 Multimodal literature search
* Integrating text and figures/tables

e Event-oriented summarization

* Extracting and organizing key research events (e.g., discoveries, methods,
results) for clearer insights

* Real-time updates & knowledge tracking
* Continuous integration of new findings

* Integration with scientific knowledge graphs
e Structured, interconnected research data
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Thank you! Any questions?

Future Direction and Conclusion

05 Open Discussion scccee

Embedding, Content-Based Filtering,

04 Recommendation System eesese | Collaborative Filtering

Graph-based QA, SQL Search, Graph

Learning, Visualization

Graph Based System sessee

RAG, Chunking, Multi-A gent

02 Paper Chat and Scientific QA eeesee | 1 1o Context Understanding

Semantic Search, Information
Extraction, Summarization

01 Al Enhanced Search System seccse
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